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ABSTRACT

After a brief discussion of the various phases of the
flow of a mixture of a gas and small solid particles and the solid
particle behavior in the mixture, the fundamental equations of the
mixture of the gas and the pseudo-fluid of solid particles are derived
from both the continuum theory point of view and the simple kinetic
theory point of view. Some new insights about various terms due to
the effects of the mixture are obtained. For instance, the partial
'préssure of the pseudo~fluid of solid particles is not negligible if
the volume fraction of the solid particles is not negligible. The
internal energy of tﬁe pseudo-fluid of solid particles contains two
parts; one part depends on the temperature of the solid particles
and its specific heat and the other part depends on the random motion
of the particles. The internal energy of the pseudo-fluid of the
solid particles due to the random motion per unit volume is of the
same order of magnitude as the partial pressure of the pseudo-fluid of
solid particles. The relations between these two points of view are
given and discussed by comparing the corresponding terms. Finally
we discuss two simplified cases of the fundamental equations which
consist of (i) the thermodynamics of the mixture of solid particles
and a gas and (ii) the case of negligibly small volume fractiom of

solid particles.
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SYMBOLS

sound speed of the gas

equilibrium speed of sound of the mixture

a constant

i th component of the instantaneous velocity of the
particles '

specific heat of the solid particle at constant volume

effective specific heat at constant volume of the
solid particles due to its random translational motion

total specific heat of the particles

specific heat of the gas at constant volume and
pressure resp.

specific heat of the mixture at constant volume and
pressure

drag coefficient

diameter of sphere particles

drag force
body force

gravitational force of the particles and gas resp.

interaction force between particles and gas

distribution function of the solid particles
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h film coefficient

Hm enthalpy of the mixture per unit mass

kl’ k2,4k3 constants

kp mass concentration of the solid particles

Lf mean free path of the fluid

Lt characteristic length of the temperature relaxation
LV characteristic length of the velocity relaxation
M total mass

™ average mass of solid particles

m mass

w ) y O .
D 5 increase or decrease of the number of particles due to

collisions resp.

np number density of the solid particles

Nu Nusselt number

P total pressure

P, pressure of the rth species

Pe Peclet number

Pr Prandtl number

q velocity vector

qcpi i th component of energy flux of the pseudo fluid

of solid particles due to the random motion
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pi

mnr

Umpl

Ump2

ith component of energy flux of the pseudo-fluid of
solid particles

velocity vector of the rth species

heat transfer rate from a single solid particle
heat conducting flux of the { th species
radius of spherical particles

gas constant

Reynolds number
effective gas constant of the mixture
stress tensor of the pseudo-fluid of solid particles

time

characteristic time of the temperature relaxation
chQracteristic time of the velocity relaxation
temperature of the rth species

velocity

ith component of the velocity

internal energy of the rth species

internal energy of the particles due to the internal
degree of freedom

internal energy of the particles due to random motion

volume



sp

g

ith spatial coordinate
volume fraction of the solid particles

ratio of ¢ and c
P v

ratio of ¢ and c
Pm vim

ratio of ¢ and c
sp v
energy source of the rth species

ratio of k and (1-k )
P P

instantaneous temperature of the particles
coefficient of thermal conductivity

thermal friction coefficient

coefficient of viscosity of the rth species

bulk coefficient of viscosity of the species

kinematic viscosity of the fluid

partial density of the rth species
species density of the gas

specias density of the solid‘particles
source function of the particles

volume of a single solid particle

viscous Stress tensor

jth component of the force on a solid particle
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@ potential energy of the rth species

(=]

work done due to random body force

Subscript: the following subscripts are generally used except

specifically defined

£ fluid

) gas

i, j, k ith, jth or kth component of a vector
M mixture

P particles
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1. Introduction

The study of the fluid flow containing solid particles has
been the subject of scientific and engineering research for a long
time. In the early days, the sediment transport in open channel
flow was one of the most interesting research problems since
J. Boussinegq's time of 19th century} The sediment transports by
water and by air are important in pollution problems which are currently
interesting problems. There are many other engineering problems
which concern with the fluid flow with solid particles such as
fluidized beds, centfifugal separation of particular matter from fluids,
electrostatic precipitation of dust, many chemical processings, solid
particle motion in rocket exhaust and dust flow in geophysical and
astrophysical problems.

Even though the dynamics of the fluid-particle system has
been extensively investigated for a long time, because of the complicated
situation, most of the investigations are empirical in nature and only
in the last few years systemmatical analytical treatments have been
developed2—7, Since the physical situation is very complicated, it is
not possible to develop a general analytic approach which covers all
the phases of the fluid-particle system. We have to divide the
fluid-particle system into several phases and each phase should be
treated in a manner which is most suitable for it. It is desirable
to describe briefly the various phases of the fluid-particle system,

particularly for the gas-solid particle mixture first and to define the



phases which will be studied in this paper.

The various phases of the gas-solid particles can be des-
cribed clearly by considering the burning of a weil packed gun powder
or by éonsidering the fluidized beds of well packed particles. The
flow conditions for these two cases may be divided into the following

five phases:

(I) Porous medium phase.

For simplicity, we consider a gas flowing through a well
packed particle bed by burning the particles as the case of gun powder
or by means of a pressure gradient as in the case of fluidized bed.

If the rate of the gas flow is very small, the well packed solid
particles will not be disturbed, the gas motion is the same as that
through a porous medium., We may consider the solid particles as

fixed in space. This phase is usually called the fixed bed stage. We

shall not consider this phase in this paper.

(II) Sedimentation Phase.

When the flow rate increases, some of the small particles
may first move with the gas flow. As the flow rate increases, the
amount of the solid particles moved with the gas flow increases. From
now on, we may call it the sedimentation phase in whch the solid
particles are transported by the fluid flow. At first the solid
particles may not be considered as a pseudo-fluid and the individual

properties of these solid particles in the gas flow play important



role in the gas flow. We shall not discuss this phase in this paper.

(I1L). Fluidization Phase,

As the rate of the fluid flow reaches a critical value,
called the flow for fluidization, at which the character of the solid
particles changes abruptly to a pseudo-fluid, waves can be set in the
solid particle bed. The Pseudo-fluid has similar behavior as ordinary
fluid such as to form a level surface. It is usually called the
dense phase of the fluidized bed. Ordinarily the overall density of
the mixture of the solid and the gas decreased only fractionally -
say 10% to 50% are compared with the fixed bed. In other words, the
volume occupied by the solid in the mixture would be 10% to 507 of
the total volume of the mixture. This is one of the phases which we

are going to consider.

(Iv) . Slugging Phase.

Further increase of the fluid flow rate would cause the flow
of the mixture irregular. For instance, bubbles of the gas rise
through the packed solid particles and burst and more and more particles
will be carried out by the gas. In principle, the behavior of the
mixture is the same as that in the fluidization phase but the actual
motion may be due to some instabilities of the flow of the mixture5

Hence this is also the case which we are going to consider.



(V) Two Phase Flow of A Mixture of Solid
Particles and Fluid.

For still further increases of the flow rate, the solid
particles occupy less than 5% of the total volume and mix well with
the gas in the flow field. This is known as the dilute phase of the
two phase flow of a mixture of solid particles and gas. Or we simply
call it the two phase flow of a mixture of solid particles and gas in
a narrow sense. Many literature (reference 3,4 and 6) éf gas-solid
mixture discuss this dilute phase. This is also a phase which we are
interested in.

In principle, the fundamental equations of the mixture of
the gas and solid particles are the same as long as the solid
particles may be considered as a pseudo-fluid. Hence it is possible
to derive a set of fundamental equations of the mixture of the gas
and solid particles which covers all the three phases; fluidization,
slugging and dilute phases of the mixture of gas and solid particles.
The fundamental equations of the mixture of gas and solid particles
have been discussed by many authors, particularly by Marble
(reference 4, 1963), Murmy (reference 5, 1965), Soo (reference 6, 1967)
and Vasiliev (reference 7, 1969). Those early attempts for derivations
of the fundémental equations of the mixture of gas and solid particles
were reviewed by Mhrray5 and Soo6 and we are not going to repeat
them here. After studying this literature, particularly references

4~7, we find that there are many fundamental concepts which are not



clearly discussed and some of which are misunderstood. We do feel that
a systemmatic derivation of the fundamental equations of the mixture

of gas and solid particles is necessary before we may study the flow
problems of the mixture of gas and solid particles.

The paper by Mafble4 is the first attempt to apply the modern
technique of fluid mechanics to the research of the two phase flow of
gas and solid particles. Marble introduced many important concepts
of the problem in his analysis such as the introduction of the
temperature of solid particles and the diameter of solid particles in
the distribution function of solid particles. These are very important
in the development of fundamental equations of the mixture of gas
and solid particles, However, Marble is limited to the case where
the volume.fraction of solid particles Z is negligibly small in the
mixture. Hence his results are applicable to the limiting case of
the dilute phase only. It has been shown clearly by Rudinger8 that
the volume fraction of solid particles Z may have significant effect
on the flow field of the mixture of gas and solid particles. We
are going to extend Marble's analysis for the case of finite volume
fraction of particles Z so that our fundamental equations may be
_ applicable for all three phases; fluidization, slugging and dilute
phases which we are interested in.

Murray 3 was the first one who derived systemmatically the
fundamental equations of the mixture fluid (or gas) and solid particles

with finite volume fraction Z from the continuum theory.



Some interesting results have been obtained. However, since he did
not use the modern technique of fluid mechanics, he made some
fundamental errors such that he assumed that the partial pressure of
solid particles is negligible and arbitrarily replaced the partial
pressure of gas by the total pressure of the mixture. The partial
pressure of the solid particles is directly proportional to the volume
fraction Z which has been shown in reference 8 by Rudinger. We plan
to derive the fundamental equations of the mixture of gas and solid
particles by both the centinuum theory and the kinetic theory so that
err>rs made by Murray may be shown clearly and some insight about the
properties of the pseudo-fluid of solid particles,such as the internal
energy of the pseudo-fluid of solid particles which depends on both

the temperature of the solid particles and the random motion of

the particles, may be obtained.

In his book,6 Soo emphasized the importance of the distribution
of the size of solid particles in the fundamental equations of the
mixture of the gas and solid particles. Hence Soo wrote formally and
arbitrarily a set of fundamental equations of multifluid theory with
solid particles of each size as a species in the mixture. This set of
equations is useléss because in general the distribution of size of the
solid particles is more or less continuous and thus we cannot use
infinite number of sizes. We feel that Marble's analysis by considering
the diameter of the solid particles as a parameter in the distribution
function of the solid particles is a much better treatment in considering

the effects of distribution of size of the solid particles. Soo did not
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discuss how one could determine the species of the solid particles for
any known distribution of size of solid particle in order that his equa-
tions may be useful. We shall use a statistical average size of the
solid particles in our analysis. Hence we consider the solid particles
as one species in our mixture with its diameter as a parameter in the
distribution function of the solid particles.

Vasiliev in reference 7 discussed some theories of two phase
flow of fluid and solid particles by Russian scientists. Since Vasiliev's
main interest is hydraulics, he considered only the incompressible fluid
case, i.e,, the mixture of a liquid and solid particles. Hence his energy
equation is the kinetic energy of the liquid and the solid particles
which is not an independent relation and which may be derived from the
equation of motion. He did not discuss the energy equation for the
temperature distribution of the mixture, which is an independent relation
from the equation of motion and which depends on the temperature of the
solid particles and the random motion of the solid particles. However,
Vasiliev discussed some interesting results of turbulent flow of the two
phase flow which we are not going to discuss in this paper. After we
derive the fundamental equations of the laminar flow of the mixture of
the gas and solid particles, it is possible to derive the corresponding
turbulent flow equations in the standard mannex.

In the modern technique of fluid mechanics, we study the funda-
mental equations of fluid mechanics from the microscopic (kinetic theory)
and the macroscopic (the continuum theory) points of view. Hence we
shall discuss the fundamental equations of the mixture of the gas and the

solid particles from the continuum theory §3 and the simple kinetic theory
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84, The complete kinetic theory of a mixture of gas and solid particles

has not been developed. It is not the intention of the author to
develop a complete kinetic theory of the mixture of gas and solid
particles in this paper. What we would like to do is to derive the
fundamental equations of the mixture of gas and solid in the continuum
theory from the transfer equations of the Boltzmann equation of the
mixture so that we may have some insight of various terms in the funda-
mental equations which cannot be obtained from the continuum theory
alone such as the partial pressure of the solid particles and .the in-
ternal energy of the solid particles.

In development of both the continuum theory of the pseudo-fluid
of the solid particle and the kinetic theory of the random motion of the
solid particle, we have to use the behaviours of the solid particles in
the gas flow as a basis, In fact, the solid particle motion in a fluid

2,3,6,9,10

is very complicated We shall briefly discuss the particle

motion, the drag and heat transfer in §2.

2. Particle behaviour in the mixture of a gas and solid particles.

In the two phase flow of solid particles and a fluid, we usually
assume that the solid particles are of small size. For instance, the
mean particle size in the exhaust of a rocket engine is of the order of a
micron in diameter., However, this size is still much larger than the
molecular size., We cannot use the usual approach in kinetic theory of
gases such that the motion of the particles depends on the force potential
around a molecule. The behaviour of these solid particles in the fluid

flow should be determined by the ordinary fluid dynamics of a fluid flow
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around a body. This problem is very complicated itself and we do not
understand it in detail yet, because the details of the local flow field
depend on the particle Reynolds number, particle Mach number, Knudsen
number, shape and size of the particles and the interaction between
particles. We have to make some approximations before we could develop
any reasonable theory of the two phase flow of gas and solid particles.
Even though the actual size of the particles is not uniform, in the two
phase theory, we may use some statistical average size of the particles
as a first approximation. In other words, in a first approximation, we
consider that the size of the particles are the same. For a more accurate
theory, we should include the particle size distribution function in the
theory., The next complicated point is the shape of the particles.

Bodies of different shape have different drag coefficient and heat trans-
fer rate. In general, the shapes of these particles are not identical.
As a first approximation, we may assume that the particles are all of the
sperical shape. We may consider the drag coefficient of a sphere of
diameter d as the average drag coefficient of all particles. We shall
discuss some other effects of the shape of the particles later. The
third difficulty in the treatment of the particle motion is the inter-
action between the particles. At the present ﬁime, only the theory of
particle~fluid system without particle interaction has been developed.
These theories, strictly speaking, hold true only for the dilute phase

of the mixture of gas and solid particles. It is interesting to notice
that the theory of dilute phase of a mixturxe of gas and solid particles
may be used for the case where the particles are small liquid droplets

as a first approximation. It would be better if some effects of the
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interaction between particles, even empirically, are taken into account
for the case of dense phase of the two phase flow.

From our experience on ordinary fluid dyngmics, the Navier-Stokes
equations which may be derived from kinetic theory of gases are applicable
to liquid. Hence it is usually assumed that the fundamental equation of
the dilute phase of the dynamics of the mixture of gas and particles
may be used for the demse phase too as long as the particles may be
considered as a pseudo-fluid. When we derive the fundamental equations
for the dynamics of the particle~fluid system from the continuum theory,
we do not make any specific assumption about the number density of the
particles. Hence the fundamental equations should be wvalid for both the
dense and the dilute phase, except that the average drag force of the
particles and the traﬁsport coefficients of the mixture should be different
in these two phases,

From the above approximations, we need to know the drag coeffici-
ent and the heat transfer rate of a sphere of diameter d to develop the
theory of the dynamics of particle-fluid system. When we examine the
literature for the drag coefficient and the heat transfer rate of a sphere,
we find that our knowledge is far from complete. Reference 9 gives an
excellent review of our knowledge from this problem and it shows many gaps
of our knowledge on this subject. In short, the drag coefficient of a
sphere depends on the Reynolds number, Mach number and Knudsen number of
the sphere as well as the flow condition, such as the turbulence in the
free stream, the acceleration of the sphere and other factors., Because
of the interactions between many of these factors, it is not possible to

give a complete account of all the factors. In order to see the essential

features of these factors, we are going to examine these effects separately,
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The most important factor for the drag coefficient is the
Reynolds number of the sphere Re = Ud/v which is defined as the ratio
of the diameter d of the sphere times a typical velocity U divided
by the coefficient of kinematic viscosity of the fluid Vv . 1In order
to see the effects of Reynolds number on the drag coefficient, we con-
sider a uniform steady flow of velocity U passing over a sphere of
diameter d in an infinite domain. We further assume that the fluid
is incompressible and isothermal so that the effect of Mach number will
not be considered. We further assume that the Knudsen number K which
is the ratio of the mean free path of the fluid Lf to the diameter of
the'sphere is much.smaller than unity, the rarefication effect of the
fluid is then negligiﬁle. For this simple case, the drag coefficient
of the sphere.is a function of Reynolds number only as shown in Fig. 1.
This curve is obtained experimentally. There is no complete theoretical
result of the whole curve, even though we know failrly well the flow
pattern at various Reynolds number ranges.

Whenkthe Reynolds number Re is very small, say below 0.1,

the inertial terms are negligible and the drag coefficient of a sphere

was first obtained by Stokes9 who gave the following formula:

C. = = = = o
D %pUz;ﬁ_[r d2 ;épuzk dz,‘T ud/v Re

Drag __37nudu _ 24 24 (1)

At very lowy Reynolds numbers, the flow field about the sphere has a fore
and aft symmetry. As the Reynolds number increases, inertial force
begins to play a role. Above Re = 0.1, there will be a wake behind tne
sphere. For Reynolds numbers less than unity, we may use the Oseen's

approximation11 and the drag coefficient is given by the following formula:
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C. = 1+ -fé—-) (2)

24
D R

As the Reynolds number R.e is larger than unity, the drag
curve of Fig. 1 is entirely empirical in nature. The flow pattern
around the sphere becomes complicated., As the Reynolds number in-
creases above 0.1, vortex rings may be formed at the rear of the
sphere and as R.e increases further, we have the well known Karman
vortex street behind the sphere which will eventually be developed
into a wake. For high Reynolds numbers, there will be a boundary
layer flow on the sphere. At Reynolds number less than the critical
Réyﬁolds number RC which depends on the free stream turbulence and
which is usually of the order of 105 to 106, there is a large wake due
to the separation of the laminar boundary layer on the sphere. The drag
coefficient is a constant over a .large range of Reynolds number at a
value of 0.5. At the critical Reynolds numbér, the drag coefficient
of the sphere drops ffom 0.5 to 0.1 and then remains at a constant value
of 0.1 for a large range of Re above Rc . Above the critical Reynolds
number, the boundary layer on the sphere is turbulent. Since the ability
to resist separation by the turbulent boundary layer is larger than that
of the laminar boundary layer, the flow will separate from the sphere at
a later point. As a result, the wake behind the sphere is smaller and the
drag of the sphere is also smaller.

The drag curve given in Fig. 1 is for the steady flow in an
infinite domain. In actual two phase flow, the velocity of the f£luid
is not uniform. Hence the particles are moving in an accelerating stream.

Hence, strictly speaking, we should consider the acceleration effects on
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the drag coefficient of the sphere. The unsteady drag associated with
the fluid and particle accelerations depends on the flow field. In other
words, it depends on the change of magnitude and direction of the flow
velocity{around the particle. No general solution of this problem is
avalilable, Hinze and Tchen discussed the case for slow motion of a

12,13 which is difficult to

spherical particle in an accelerating flow,
use in the development of the theory of two phase flow. Fortunately,
because of the small size particles and low relative acceleration between
fluid and particles in many practical problems, we may neglect the ac-
celeration effects and use the stokes formula as a first approximation
to develop the theory of the dynamics of the fluid-particle system.

When the volume fraction of the solid particles Z is above
0.1, it is advisable to modify the expression of drag coefficient of the
particles in the mixture of gas and solid particlés. There is mno
theoretical analysis for such modification but some empirical formulas have
been suggested by various authors (see chapter 5 of reference 6). When
the particle Reynolds number is below 0.1, the following drag formula

is recommended:19

Z
When Z>0.1:  Cj= 200~
(1-2) Ré
3)
and When Z < 0,1 : CD = 24/Re

We shall use Eq. (3) in some of numerical solution for our
study in the lunar ash flow.]'7 In these numerical calculations, we will

see the effects of the drag coefficient due to volume fraction of the

solid particles.
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Besides the effects of Reynolds number on the particles,
there are many other factors which would affect the drag coefficient of
the sphere. These factors are as follows:

(i) Mach number of the particle., The Mach number gives the effects
of compressibility on the dfag of the sphere. The flow pattern would
change as the Mach number increases, particularly when the flow is changed
from low subsonic to a supersonic case. As a result, the drag of the
sphere would change too. However, since the velocity which determines the
Mach number of the sphere in the two phase flow case is the difference
of velocities of the particle and that of the fluid. Thus in general,
we do not expect a large difference of these velocities. The drag co-

efficient for low Mach number such as that given by Fig. 1 should be
-sufficientlyAaccurate.

(ii) Free stream turbulence. The free stream turbulence has a large
effect on the drag of the sphere if the Reynolds number is near the
critical value Rc . If the Reynolds number of the particle is very small,
the effect of the free stream turbulence should be small as far as the
interaction of the particle and the fluid is concerned.

(iii) Rotation of the particles, If the sphere is rotating in the
fluid flow, it would produce a lift which is known as the Magnus effect
and then the interaction of the particle and the fluid should be modified
accordingly., For particles of shape other than that of a sphere, the
rotation of the body would introduce a moment and thus modify the inter-

action of the particle and the fluid accordingly.10
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(iv) Surface roughness of the particle. The drag coefficient
given by Fig. 1 is for a sphere of smooth surface. If the surface of
the sphere is rough, the drag coefficient may be different from that
given by Fig. 1, particularly when the size of the particle is not too
small and the Reynolds number is near its critical value. Ordinarily,
this effect is small in two phase flow.

(v) Rarefication effect. If the diameter of the sphere is of the
order of the mean free path of the gas in which the sphere is moving,
rarefication effect will not be negligible, At first, we may have slip
flow condition for the sphere, If the diamter of the sphere is much
smaller than the mean free path, we have free molecule flow for the
sphere, If we operate in these conditions, the drag force should be
modified acéordingly;14

Even though there are many uncertainties about the drag co-
efficient of the sphere, the author believes that by proper choosing
of the size of the sphere, the modified Stokes law (3) should be able
to represent average drag force of the sphere in the development of the
theory of the dynamics of solid-particle gas system which has been used
by many authorsz-'8 and which will be used in this report.

Another important property of the particle which is essential
in the development of the theory of two phase flow of particle-and gas
is the heat transfer rate of the particles. The status of our knowledge
for the heat transfer of a sphere is just as uncertain or empirical as
that for the drag coefficient, because the heat transfer rate depends
on the local flow field which is essential for the determination of the

drag. Similar to the case of drag coefficient, we have only theoretical
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results for low Reynolds number or the Stokes regime only. The Husselt
number for a sphere is two when the diameter of the sphere is used as a
typical length. For the second approximation, we may use the following

formula:

=

d

Nusselt No, No== 2 + gPe + (4)

where h is the film coefficient of the sphere or the heat conducted
per unit area per unit time into the sphere, d is the diameter of the
sphere, K 1is the coefficient of thermal conductivity of the fluid and
P = Pr'R.e is the Peclet number, Pr = cpu/K is the Prandtl number and

e

R
e

Ud/v is the Reynolds number of the sphere.
For high Reynolds number range, Eq. (4) may be modified by

empirical formula such as

k k

) 2, 3
No=2+k (R) (@)

G
where kl’ k2 and k3 are constants determined by fitting the empirical
data in the range of Reynolds number Re and Prandtl number Pr which
are of interest. Those factors mentioned above which have influence
on the drag coefficient would also have influence on the heat transfer
rate too. It should be noticed that if we conéider only the case of
small particle Reynolds number, Nu = 2 should be of sufficient accuracy.
For a first approximation, we may use an analogy similar to
Reynolds analogy of ordinary fluid dynamics for the heat transfer and
interaction force due to drag of the solid particles as follows:

If we write the interaction force due to drag of particles as

F=xy(2) @ -q)
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the heat transfer rate between the two species in the mixture is then

o = 52 K@ (T, - T)

GQ-;: !’UK

where KD(z) is a function of volume fraction 2z (see Eq. (3)) and KP
is the coefficient of thermal conductivity of the solid particles and

ug is the coefficient of viscosity of the gas [see Eq. (37)].

The drag force of the particle determines the slip in velocity
between the average velocity of the solid particles and the f£luid velocity
while the heat transfer rate of the particle determines the difference
of -the temperature of the solid particles and that of the fluid. By
dimensional analysis and the fundamental properties of the solid particles
and those of the fluid,lwe may determine the characteristic times and
lengths which show how long the time and / or the distance that the
velocity and the temperature of the particles will reach those correspond-
ing values of the fluid. We are going to determine these characteristic
times and lengths as follows;4

(i) Relaxation in velocity. The properties of the solid particles
are the average diameter d of the sphere, the average mass m of a
solid particle and the specific heat cg of the particle., The physical
properties of the fluid or the gas are the coefficient of viscosity U of
the fluid, the coefficient of thermal conductivity K of the fluid, the
specific heat at constant pressure of the fluid cP and the flow velocity
U of the fluid. Now the drag force D of the solid particle should be
of the order of magnitude of its inertial force for the final equilbrium

condition. By dimensional analysis, we have
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D v duU Vv inertial force v mU/tv = mU2/Lv (6)

where tv is the characteristic time of velocity relaxation while L
v
is the characteristic length of velocity relation. From Eq. (6), we

have

= e ((B_y =
tV = constant ( ™y ) LV/U . 7)

Marble4 suggested that the constant in Eq. (7) may take the value of
%F if we use the Stokes formula for the drag force. Equation (7) gives
us a formula to estimate the relaxation time and distance to reach the
equilibrium of velocity between the particles and the fluid,

(ii) Relaxation in temperature. By dimensional analysis, the
equilibrium of the heat transfer by conduction and the increase of

temperature of the solid gives:

Total amount of heat conducted v area X film coefficient X time Vv
2 2 KkdL

S
Nod h tT N od E'tT =3 N c, m (8)

where tT is the characteristic time of temperature relaxation while

LT is the characteristic length of temperature relaxation. From Eq. (8),

we have
cm

t.., = (constant) - I

T = LT/U . 9

Marble4 suggested that the constant in Eq. (9) may take the value of

1/2 m if we use Nu = 2 for the heat transfer rate. Equation (9) gives
us a formula to estimate the relaxation time and distance to reach the
equilibrium of temperature between the particles and the fluid. Besides
the heat conduction, the thermal radiatipn of the particles may not be

negligible in some cases.
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3. Fundamental equations of the mixture of a gas and solid particles

from continuum theory point of view,

We consider only the case that the particles may be considered
as a pseudoffluid. The solid particles are spheres of identical mass mp’
radius rp and specific heat cg o We may consider the mixture as the
mixture of two fluid: one of the real fluid, gas or liquid and the other
is the pseudo-fluid of the solid particles. For each species r in the
mixture, we would like to know its velocity Qector Er, its temperature
Tr’ its pressure P. and its density 5; . Since there are some con-
fusions about the definition of density of the solid and the f£luid, we
first clarify this point, as follows:

We consider an element of the mixture of a fluid £ and
solid particlés p. with total mass M = Mf + Mp and with total volume
V = Vf + VP where the subscript £ refers to the value of the fluid,
gas or liquid, and the subscript p refers to that of solid particles.
It is convenient to introduce the number density of the solid particles

np which is the number of solid particles per unit volume at a point

in the flow field. The volume occupied by the solid particles Vp is then

V =n *VerT (10)

where T_ = g-w r3 is the volume of a solid particle in the mixture.

P
The mass of the solid particles in the volume V is

M =m n V . (1D
P
M m
o= =% . (12)
p Tp

Hence the species density of the solid particles is a constant for a

given problem.
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In the analysis of the two~fluid theory, we should use the
partial density of each species. The partial density of the pseudo-fluid

of solid particles is defined as

M —
- =mn =2 = T
pp = 'VB PP pSP pSP P nP (13)

where Z represents the fraction of volume of solid particles in the
mixture which is one of the important variables in the treatment of two

phase flow of gas and solid particles. From Eq. (13), we have

\Y
Z=-‘~]-P-=n7r— . (14)

In maﬁy analysis of two phase flow, we consider the case where Z 1is
very small in comparison with unity so that some simplification may be
obtained (see §V). Ho&ever, we shall first derive the fundamental
equations for finite value of Z. The partial density of the pseudo-fluid
of solid particles B; is one of the fundamental variables in our
analysis and it is proportional to Z or np .

Similarly, we have also the species density of the gas and
the partial density of the gas too. The species density of the gas or

fluid is defined as

g
p_= Vg (15)

and the partial density of the gas or fluid is defined as

5 - B. &8
20 S (16)

Only when the volume fraction of the particles Z is negigibly small
in comparison to unity, the partial density of the gas is approximately
equal to the species density. The distinction between these two densities

is very important in the analysis of two phase flow for finite values of Z.
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Now we are going to discuss the fundamental equations for the

mixture of a gas and a pseudo-fluid of solid particles based on the two
fluid theoryls’lé. These equations are as follows:
(i) .Equations of state.
For each species in the m;xture of gas and pseudo~fluid of

solid particles, we have one equation of state. For the gas, we may use

the perfect gas law, we have

]

P =R'b'gT (L-2)p (17)

=R (1 - Z T
g ( )pg

g g

where Pg is the partial pressure of the gas in the mixture and Tg
is the partial temperature of the gas and R is the gas constant., The
total pressure of the mixture is p which is obtained from the perfect

gas law as follows:

=R T 18
p pgg (18)

Since the total pressure of the mixture is the sum of the partial
pressure of the gas pg and the partial pressure of the pseudo-fluid
of solid particles pp , we have p=p + pp » With the help of Egs. (17)

g
and (18), we find that the partial pressure of the solid particles must be

Pp_.=2p (19)

If Z << 1, we may assume that the partial pressure pp of the solid
particles may be negligible as has been assumed in many literature
However, for finite value of Z, Eq. (19) should be used. Thus we show
that Murray's assumption that pP is negligible for finite Z 1is not

correct.
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The equation of state for the pseudo-fluid of solid particle

is simply

psp = constant (20)

Thus in the two fluid theory of the mixture of gas and solid particles
we may consider one variable less than the theory of the mixture of two
compressible fluids, as we shall show later.
(ii) Equations of continuity.
For each species in the mixture, we have one equation of
continuity which gives the conservation of mass of that species.15
For the pseudo-fluid of the solid particles, we have the equation of

continuity:

9Zp

=2+ aii @ oy, u;) -=-q (21)
where u; is the ith component of the velocity of the pseudo-fluid

of the solid particle Zp and Gp is the source function of the particles
and the summation convention is used in Eq. (21). Ordinarily, we may take
OP = 0 while in some problgms such as lunar ash flow17, we may take

6 =bp =bZp where b 1is a constant.
% P sp

For the gas, we have the equation of continuity:

3 d i, _
=t [(L - 2) Og] +'E;E'[(l - 2) Py ug] Gp (22)

i >
where u; is the ith component of the velocity of the gas qg and pg
is the species density of the gas, which is governed by Eq. (18).

Adding Egqs. (21) and (22), we have the equation of continuity

of the mixture:
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ap Jdpu
=t =0 (23)
ox
where p 1is the density of the mixture, i.e.,
p =2 + (1 - 2) =p +p 2
Pep T ¢ Pg = Py * 0, (24)

i, . .
and u~ is the ith component of the flow velocity vector of the mixture

.+
q which is defined as

q==(

oyl

- —_ >
Py 95 *+ ppqp) . (25)
(iii) Equations of motion,
For each species, the conservation of momentum gives the
corresponding equations of motion.
For the pseudo~fluid of solid particles, we have the equations

of motion as follows:

-+
. D q
] io > > > >
z — + . =z 2P =_.vVp +Ver +F _+F-0Z (26
psp (Bt Yo axt ) 9 pSp Dt Pp p bp P PP (26)
and for the gas, the equations of motion are:
>
12 o &+t 3 = -2 Pels gy uver 4 4% 40 @)
- — + u_ ——r = (1~ = = .
got g4 1 g P TDE Pg”" "g’ "bg " g p'p

where the partial pressures of the pseudo-fluid of solid particles and that
of the gas are respectively pp and pg while the corresponding viscous
stresses tensors of the solid particles and gas are Tp and Tg . Even

though the study of the viscous stresses of the pseudo-fluid of the solid
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particles is still meager, for a first approximation from the continuum

theory point of view, we may take similar expression for both the pseudo-
fluid of solid particles and that of the gas with the Navier-Stokes

relations495 as follows:

.. Bui auj Buk .
- T _r ry siJ
T, M ( 3 + i) + U G—Tﬂ S (28)
ox 9% ox

where §id = 0, ifi$j , Gij =1, if i =3 , subscript r
refers to the values of rth species, the summation convention does not
apply to the indices of the species r but only to the tensorial indices
i, jor k. The coefficient of viscosity of rth species is M while

the second or bulk coefficient of viscosity of rth species is The

Heg
restrictions on the values of ur and url are ur 20 and
2ur + 3url 2 0 ., Ordinarily, we may take 2pr + Burl = 0 for a first
approximation, If Z is not negligibly small, we may not neglect the
partial pressure of the pseudo-fluid of solid particles. The assumptions
used by Murray in reference 5 that pg = p and .pp = 0 for arbitrary
value of Z are wrong. They are true only Wheﬁ Z >0, In general,
we should use the relations (17) and (19) for pg and pp in terms of Z
and the total preésure of the mixture.

The body forces of the species are %ﬁp and ﬁﬁg which con=-

sists of the gravitational forces and the electromagnetic forces and other

body forces., For instance, for the gravitational forces, we have

> -+ > -
F = Z F = (1-2 29)
bpg psp g R bgg (1-2) Py & (
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->
where g 1is the gravitational acceleration vector. If the body forces

are the electromagnetic forces, we have to consider the electromagnetic
field simultaneously with those fundamental equations discussed in this

report. We are not going to consider the electromagnetic forces in this

report.

The most difficult forces in the present analysis are the
interaction forces between the fluid or gas and the pseudo-fluid of solid
particles which are shown in Eqs. (26) and (27) as %é and fé . As we
have briefly discussed in section 2, the interaction forces consist of
many terms such as the drag forces of the particles, the bouyancy force
of the solid particles, the dacceleration forces, etc. In many theoretical
analyses, only the simple drag force due to viscous stress is considered.

For first apprbximation, we may use the simple formula:

> > ->
F = n 67r - 30
p 0 pug(qg qp) (30)

where we assume that the solid particles are spheres of same radius r

and the interaction between particles are negligible and Stokes formula

is used for the viscous stress. Of course, Eq. (30) is good only when the
volume fraction of the solid particle is small, say Z < 0.1. For larger
value of Z , some modification of Eq. (30) should be used19 such as Eq. (3)
or other formulas. .

By Newton's third law of motion, we have always
. (31)

If we consider the gravitational force as a body force, we should
also include the bouyancy force as a part of the interaction force. 1In
this case, we should add the bouyancy force to the viscous drag force of

Eq. (30) and the bouyancy force is simply



26
> ->

Py = ~ 2 e & (32)

It is interesting to notice that if we combine the bouyancy force with
the corresponding body force due to gravitational acceleration, we have

for the pseudo-fluid, the force due to gravitatiomal acceleration

-

- -
F + F = -
bpg p(b) Z (pSp pg) & (33)

where for the gas (Eq. (27)), we have the force due to gravitational
acceleration:

> -

F.  +F = (1-2) pg+Zops = pop (34)
bgg = g(b) Pg® PgB Pg?

where Egs. (33) and (34) were used in references 5 and 6 without indication
of the origins of these forces. Even though those other effects of inter-
action forces such as due to acceleration, rotation etc. have been dis-
cussed in literature, they have not been included in any successful
treatment of theoretical analysis of the flow problems of particle-~fluid
system. We do not expect that they will be successfully included in any
flow problems analysis in the near future and hence we shall not discuss
them further.

The term OPZP is the force associated with the momentum due
to the source term O_ .

If we add Eqs. (26) and (27) and use the definitions of the
density and the flow velocity of the mixture (24) and (25), we may obtain
an equation of motion for the mixture as a whole. If we use proper de-
finition of the coefficient of viscosity or viscous stress tensor of the

mixture including the diffusion terms, we may formally obtain the equation
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of motion of the mixture in exactly the same form as ordinary Navier—
Stokes equation.15 Because of the terms of diffusion in the definition
of viscous stress and pressure, such an equation is not very useful in
the analysis of flow problem when the diffusion terms is not negligibly
small. Hence, we shall not write this equation of motion of the mixture
here. But in some limiting cases, such an equation of motion of the
mixture may be useful and we will discuss them in section V. Reference
15 may be referred to for the equation of motion of the mixture in a
multi-fluid theory.
(iv) Equations of energy.

For each species, the conservation of energy gives the corres-
ponding equation of energy.

For the pseudo-fluid of solid particles, we have the equation

of energy as follows:

2
d[zp_ (U +3%q +¢ )] .
5P TP PP 4+ 2 2o W@ +uq%+0)-ultidy
ot 5] sp p = mp P P PP
+eidt, —d) = K -1 +e (35
“p Pp QCP] 7 g p) 2 )
and for the gas, the equation of energy is
-2 o W +k5 s+ 8] ; ) i
+ - 1-2)p u’ (U_ +sq + -uT- +
ST | [( )pg g( mg g ¢g) L
s = K (T.-T) +¢ (36)
“gPe ch] 3 P g) g

. ij .
where Umr is the internal energy per unit mass cf the rth species, Trj is
the ijth component of the viscous stress tensor of the rth species; Qir is

the heat conducting flux of the rth species and w¢r is the potential energy
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of the rth species, q. is the magnitude of the velocity vector of the
rth species; €. is the energy source due to chemical reaction and/or
electromagnetic forces and other heat addition terms of the rth species.
We shall'discuss the significance of some of these terms in the next
section from the simple kinetic theory point of view. In general, they
are of tbe same nature as ordinary fluid. KT is the thermal friction
coefficient between the solid particles and the gas. Our kﬁowledge for
the expression of Kep in terms of physical properties of the solid par-
ticles and various parameters is still very meager. It is more compli-
cated than the expression of interaction forces. In our approximation

with Stokes law for the interaction force between solid particles and

the gas, we may take

Kp = np lmrp Kp (37)

where Kp is the coefficient of thermal conductivity of the solid
particles.

Similarly, we may add the two energy equations (35) and (36) to
get an energy equation for the mixture of the gas and solid particles.
This energy equation may be reduced to the same form as that of ordinary
gasdynamics if we use complicated definition of viscous dissipation and
heat conduction flux by including those complicated terms due to diffusionls.
Since such an equation is not very useful in the treatment of problems,
we shall not write it here. Reference 15 may be referred to for the energy
equation of the mixture as a whole in the multi-fluid theory.

Since the density of the solid particles psp is considered as

>

a constant, we have eleven variables: 'Ep . qg s P s 2 pg . Tp and Tg
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in our study of the flow problem of a mixture of a gas and a pseudo-fluid

of solid particles which are governed by the eleven equations: (18), (21),

(22), (26), (27), (35) and (36).

4. TFundamental equations of the mixture of a gas and solid particles

from the simple kinetic theory point of view.

Similar to the case of ordinary gasdynamics, the kinetic theory
of two phase flow of solid particles-gas system would give much more in-
formation than the continuum theory could and on the other hand because
of many physical and mathematical difficulties, it is not possible at
the present time to use the kinetic theory to treat any practical flow
problem., However, the Boltzmann equation of the kinetic theory of gases
serves two important aspects in the study of gasdynamics. In the first
place, the fundamental equations for the macroscopic description may be
derived from the Boltzmann equations as a first approximation. Thus we
may have some guides about the validity of the fundamental equations of
the continuum theory from the analysis of Boltzmann equation. In the
second place, the Boltzmann equation may give us valuable information on
the transport coefficients, such as the coefficients of viscosity, heat
conductivity, etc. In the'macroscopic analysis, these transport coeffi-
cients are simply introduced as known functions of state variables of the
gas. We would expect that the Boltzmann equations of the two phase flow
would serve in a similar manner in’ the dynamics of the particle-gas system.

Since the kinetic theory of particle-gas system is more com-
plicated than that of gas alone, all the restrictions and difficulties
in the development of kinetic theory of gases remain in that for the
particle-gas system. Furthermore, we have to make additional approximations

in the kinetic theory of particle-gas system. The additional complications
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in the kinetic theory of particle-gas system are (i) size distribution of the
particles, (ii) the physical properties of the solid particles, and (iii) the
collision process of the solid particles and the collision process of the

solid particles with the gas. Hence the kinetic theory of the particle-gas
system is still in an undeveloped stage and only a few preliminary attempts
have been made. Thus, in this section, we can only give some sketch of these
preliminary attempts 4,20 in order to get some insight of certain terms in

the fundamental equation of the particle-gas system discussed in last section.

In the same spirit of kinetic theory of gas, the kinetic theory of
particle-gas system has been treated on the basis of Boltzmann equation of
singlé particle distribution function. We may define a molecular distribution
function of the gas Fg and a distribution function of the particles F
and each of these distribution functions is governed by a Boltzmann equation.

The distribution function of the gas molecules Fg may be defined in
in the same manner as that in ordinary kinetic theory of gases16 but the
Boltzmann equation for Fg should contain the body force on the molecules
by the solid particles and the collision terms should contain the collision
between the gas molecules and the solid particles. A complete theoretical
expression for these two additional terms is still not available at the
present time.

The distribution function for the solid particles Fp is different
from that of the gas molecules because we have to take the different size,
shape and physical properties of the solid particles into account. As
suggested by Marble4, if we consider only the case that all the particles
are spheres, we may define the distribution function of the solid particles
FP as follows:

The number of solid particles dnp with radius between rp and

r +drP , in a volume Xy and xi+dxi , having the particle instantaneous
P
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velocity ¢y in the range c; and ci+dci and the instantaneous temperature

of the solid particles in the range © and 6 + d6 is

F_(x, ,‘cj , 0, rp , £) d3xi d3cj do drp = dnp . d3xi (38)
where Xy is the ith spatial coordinate of the point considered and d3xi

is the elementary volume at the point considered; cj is the jth component

of the instantaneow velocity of a particie in the direction of X and

d3cj is the volume in the velocity space; © 1is the instantaneous temperature
of the particle which may be varied from particle to particle and rp is

the radius of a particle which may be different for different particles

in the mixture,

The.distribution function of the gas molecules Fg may be defined
in a similar manner as Fp but Fg is different from FP in two respects:
(1) the radii of all molecules of a given gas are the same and hence we do
not have the variation of the distribution function with the size of the
particles rp and (ii) the temperature 6 of the particle should be
replaced by the internal energy of the moleculel6. In the case of simple
kinetic theory of monatomic gas, we may drop the variation of the distri-
bution function with the temperature © in the distribution function Fg.
In general, our discussion on Fp may be applied to Fg with a little
modification. Thus we shall consider only Fp from now on.

The variation of the distribution function Fp with the radius
rP , i.e., the size distribution of the solid particles, is different for
different practical cases and we should assume that this variation is given
in the development of the kinetic theory of the particle-gas system. The

simplest approximation about the size distribution is that we replace the

size distribution by an average size ;é and then the variation of Fp with
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rP may be omitted in our analysis. This is the case which we are going to
consider. The second approximation for the size distribution is that we
divide the particles into two groups and in each group, we use an average
radius ;éi » 1 =1o0r 2, In this manner, we may consider the solid
particles as a mixture of two kinds of spheres with radii ;él and ;£2
respectively for each group. We define a distribution function Fpi . The
disfribution function so defined is independent of ;ﬁi explicitly. This
approach has been used in reference 20 in which some interesting results
about the interaction of particles of different sizes were obtained. Of

course, for more accurate approximation, we may divide the size of the

particles into N groups and for each group we use an average radius

"

pi i=1,2, —— N . In such an analysis we have to use N-distribution
functions for the particles, i.e., one each group ;fi . Since such an
analysis may be formally extended from our analysis of one uniform size
particle in a straightforward mannerl6 just as in the case to extend the
kinetic theory of a single gas to a mixture of gases,l6 We shall not con-
sider this case of N-groups gny more .

The distribution function Fp is governed by the Boltzmann
equation which shows that the total rate of change of Fp with time must

be equal to the change of number of the particles per unit volume in the range

of variables considered, i.e.,

oF ¢.F QF
3 LN NS
—3-t-2 + ‘a'x—J (CjFp) + §—C‘; ¢ - ) + 50 (mcs ) = Mp Mp (39

where ¢j is the jth component of the force on a solid particle of radius

rp and a mass mér) which is a function of rp in general; Qh is the
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heat transfer rate from a particle of radius rp and cg is the

C))

specific heat of a particle, Mb is the increase

of the number of the particles per unit volume per unit time in the
velocity range cj and cj + dcj and temperature range O and 8 +.d6 and
radius range rp and rP + drp due to the collision effects and M(~)
is the corresponding decrease of the number of the particles in the
range of the variables considered due to the collision effects. The
exact expressions for M;+) and M;-) depend on the kinetic pictures

of the motion and heat transfer of the solid particles. In general,

we have to make various assumptions about the motion and the heat trans-

fer of the particles before we may write down the expressions for M;+)

and Mé—) .
Let us discuss a few fundamental difficulties in the develop-
ment of a successful kinetic theory of particle-gas system as follows:

(1) The force ¢j on the particles are complicated functions of many
gasdynamic parameters as we have discussed in sections 2. The force ¢j
should be a function of the instantaneous velocity of the particles and
the unsteady effect of the flow field may be important. At the present
time, only the Stokes law of force for steady unlimited flow field has
been used."’20 Hence we are still in the preliminary stage of simple kipetic
theory of particle-gas system.

(ii) Similérly, the heat transfer rate Qh of the particles is very
complicated as discussed in section 2 and only the heat transfer rate cor-
responding to the Stokes flow region has been used.

(iii) The collision terms M;+) and Mé-) consist of the collisions
between particles and the collisions between particles and gas molecules.

The mechanism of these collisions are very complicated, particularly whenr

the size of the particles varies. A part of the collision between the
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particles and the gas molecules is taken into account by the body force

¢j » Since the body force ¢j is expressed in terms of the mean flow
velocity of the gas around the particle, there are still remaining collision
effects between particles and gas molecules due to peculiar velocity of the
gas molecules. In reference 4, collision terms are completely neglected.

In reference 20, the collision between particles and gas molecules are
neglected except that part due to the mean flow which is expressed in the
body force term ¢j according to Stokes law. In reference 20, only the
long range collisions between two groups of particles were considered.

From the Boltzmann equation (39), we may formally derive the
various transfer equations for the particles (pseudo-fluid) which are the
fundamental equations of particle—gas system for macroscopic treatment.
Before we derive these transfer equations, we have to list the formulas
which show the macroscopic variables in terms of distribution function Fp.

(i) Density and number density of the pseudo-fluid of solid particles:
The number density nP is
n = f f f F (x, ,¢, 40, ,t) d3c, dé dr (40)
p p 1 ] P ] p
If the particles are of the same radius, we may‘consider that the dependence
of Fp with rp is a delta function and the integration with respect to
rp is unity. Hence the integration with respect to rp may be omitted.

We have simply

n = J F(xg,ey 08,1, 0 d3cj a0 (40a)

Similarly, if the temperatures of all the particles are the same, we may

consider that the dependence of Fp' with © is a delta function and the
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integration with respect to 6 is unity, and may be omitted. Hence for
the case of constant radius particles with same temperature, Eq. (40) is

reduced to the usual definition of ordinary kinetic theory of gas, i.e.,

_ 3
nP = J Fp(xi , cj , 0, rp , t) d Cj (40b)

The same concept of integration is applicable to all the integration in
this section,
The mass density or simply density of the pseudo-fluid of solid

particles is

— 3 — —
pp = f f f mp(rp) F(xi s cj , 0, rp , t) d cj de drp = mp(rp) np (41)

where E& is the partial density of the pseudo-fluid of solid particles
and 5; is the mean mass of a particle in the fluid and ;£ is the mean
radius of a particle in the pseudo-fluid. Equation (41) may be used to de-
termine the mean mass E? and mean radius E; of the particles if we
replace the actual particles by the same number of particles of same size
r .

P
(ii) Flow velocity of the pseudo-fluid of solid particles uPi is

1 3
, = . d7c. d6 d 42
u f fﬁ[ mp(rp) ey Fp cJ rp (42)

(iii) The temperature of the pseudo-fluid of solid particles Tp is

1 3
T = 0 F dic. do d ., 43
ffjmp(rp) p © %j o (43)
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It should be noticed that the temperature of the pseudo-fluid of particles

is not the kinetic temperature of the particles, This is the temperature
similar to those temperatures of internal energy other than the kinetic

energy of random motion of the particles. For the gas, we should not use
the expression of (43) for the temperature but the ordinary kinetic tem-
perature of the gas.l6’ =

(iv) The interaction force exerted upon the particles by the gas in

a unit volume of gas=-particle mixture is

— 3
Fpi(xi , t) = f f [ ¢i(xi . cj , 0, rp , t) Fp d cj de drP _(44)

The difference of notations between the distribution function Fp and the
ith component of the total force acting on the particles by the gas Fpi

should be noticed., For a given expression of ¢i , we may calculate the

interaction force. In the simplest case, we may have the Stokes formula

(30).

(v) The work done on the gas by the entire particulate clouds in the

elementary volume is
3
@p = [ J J (ck - upk) q)k(xi R cj s 0 rp , T) Fp d <, dod drp (45)

This is the work done due to random body force in the random motion of the

particles,

(vi) The total heat transfer rate to the gas by the particle cloud

within the elementary volume is

3
= 46
Qp J [ [ Qh(xi ’ Cj s 8 rp , t) Fp d cj de drp (46)

There is no similar term of Qp in the ordinary kinetic theory of gas.
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(vii) The stress tensor of the pseudo-fluid of solid particles is
3

S,. = m_(r c, —u_, c, - ,) F_dc, d6 .
1] f f f P( P) ( i Pl) ( J uPJ) P ?J drP (47)
This stress tensor corresponds to the pressure tensor of ordinary
kinetic theory of gases which consists of the partial pressure pp of
the pseudo-fluid of solid particles and the effective viscous stress
tensor of the solid particles due to their random motion. In addition to

this stress tensor, we have the body force ¢i which is due to the

difference of the velocities cj from the flow-velocity of the gas ugi .

" (viii) The energy flux of the pseudo-fluid of solid particles is

4 = f J I mp(rp) cs(e - Tp$ (ci - upi) Fp d3cj do drp . (48)
This energy flux is due to the random distribution of temperature and
random motion of the solid particles in the mixture of gas and solid
particles and it is the additional heat flux to the heat transfer QP of
Eq. (46) which is the heat transfer over the mean flow velocity and mean
temperature of the gas, Furthermore, we may have additional heat con-
duction flux due to the third moment of the fluctuation velocity cicjck
as in the case of orxdinary kinetic theory of gases.
With the definitions of these macroscopic quantities of (40) to

(48), we may obtain the transfer equations by taking moments of both sides
of the Boltzmann equation (39) as follows:

(i) Equation of continuity. For the zeroth moment, we multiply
Eq. (39) by mp(rp) and integrate the resultant equations with respect

to d3cj over the whole velocity space, with respect to df over the

whole temperature space and with respect to rP over the diameter space and
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we obtain the equation of the pseudo-fluid of solid particles in the same

manner as that for gasdynamical equation of contuity;lS’_~L6

3 , = 0 -
T o%p )+ m—( Pt ) = -0 (49)

i
where Einp = Z psp by Eq. (13) and - Op is the term due to the
integration of the collision terms M;+) - M;_) . Hence Eq. (49) is
identical to Eq. (21) except that we may calculate the source function
op if we have the exact expression for the collision terms.

(ii) Equations of motion.

For the first moment, we multiply Eq. (39) by mpci and in-

tegrate the resulting equation with respect to d3cj * db drP over all
these spaces as in the case of zeroth order moment and obtain the

equation of motion of the pseudo-fluid of solid particles as follows;

_ 3 3 asi.
mpnp(-é—é- + upj 3‘;;) upi = + Fpi - '-.-laxj - Upzpi (50)

where the stress tensor of the pseudo-fluid may be written as

S, . = pa"—T.. e (51)

Hence Eq. (50) is practically identical to Eq. (26) except that we do
not consider the body force such as gravitational force in Eq. (50) nor
in the Boltzmann equation (39). If we include the body force such as
gravitational force in the expression ¢i of Eq. (39), we will have the
corresponding force Fbpi in Eq. (50) so that Egqs. (26) and (50) are
identical. The term Opri is given by the integration of the collision

terms,
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(1ii1) Equation of energy.

Because the temperature of the solid particles is not defined in
terms of its random translational motion, but the internal degree of free-
dom (cf. Eq. (43)), the internal energy of the pseudo-£fluid of solid

particles may be considered of two parts as follows:

= U
Ui Uipl + Unp2 (52)

where Umpl = cST = internal energy due to the internal degree

of freedom of the particle whose average

temperature of particles at X, and t

is Tp , which is defined by Eq. (43).
and u -2 J f J bm (¢g —u,) (¢, —u,) F d3c. de dr

mp2  — p 'k pk’” 'k Tpk® "p © 7] P
PP

c. T where ¢ may be considered as an effective
VP P vp

specific heat at constant volume of the pseudo-fluid
of solid particles due to random translational motion.
For first approximation, we may assume that <y is a
constant, P

It should be noticed that Um is of the same order of magnitude as

p2
pp/E? « Now we are going to derive an equation which governs Umpl and
another equation which governs Umpz in order to get an equation for the

variation of the total internal energy of the pseudo-fluid of solid

particles UmP .given in Eq. (35).

For Umpl’ we multiply Eq. (39) by mpcse and integrate the
resultant equation with respect to d3cj ° df - drP over the velocity,

temperature and radius spaces and obtain the following equation for Umpl :

aq
3 - 3 - _ i _
-3-—1-:-( mpanSTp ) + -5—)2-:1:- ( mpnpcsupj Tp ) = -—-P—-aXi + Qp + Epl (53)
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where

- L) (=), 3
epl [ f f mpcSG [MP Mp ]1d e, de drP (54)

and qpi “and QP are given respectively by Eqs. (48) and (46).
. L2
For Umpz , we multiply Eq. (39) by % mpck

the resultant equation with respect to d3cj dé drP over the whole

and integrate

velocity, temperature and radius spaces and obtain the following equation

for Ump2 s
3 —_ L 2. 3 - L 2 N
Bt;( _pnpUmpZ + 4 mpnpupk ) + ij [upjmpnp(UmPZ + % upk )] =
9 epi L o (53)
- - +u.F + €
W (k551 R R
where
{ 2 3, d6 dr (56)
., = - ., —.u ) F d
epy f J J mp (o ~up) (e mupy) Fydied P
= heat conduction flux of the pseudo~fluid of solid
particles due to random motion
2 (P (=) ;3
£, = % M - M d7c; d6 dr 57
p2 {[fzmpck[P My 71 d7ey P 57)

and @P and Fpi are given respectively by Eqs. (45) and (44).

If we add Eqs. (53) and (55), we obtain the energy equation for
the pseudo-fluid of solid particles, which is identical to Eq. (35). If
we neglect the potential energy which we do not include in our derivation

of Boltzmann equation (39) and use the following relations:

+.q_.) (58)

Qpy =~ Uepj Pj

cpj

. 9

K (T -T +e = +® +u ,F , +¢ + €
T( g p) P Qp P pi pi rl p2
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Hence we have some confidence in Eq. (35) obtained from the continuum
theory point of view and further we have more information about the
terms such as the heat conduction flux of the pseudo-fluid of solid
particles Qcpj which consists of two parts: one is due to the heat
conduction from the solid partilces to the gas and the other is due to
the random motion of the solid particles.,

Formally, we may derive the equations for Sij ) qpi etc., in
a similar manner as in ordinary kinetic theory of gases as described in
references 15 and 16. Since we do not know the exact form for the
collision terms [Mé+) - Mé—)] and we shall neglect the stress tensor of
pseudo-fluid of solid particles Sij except the partial pressure pP
which is proportional to Z , we do not derive these equations here. It
should be noticed that if we have additional body forces other than due to
the interaction of solid particles and gas molecules, we may have other

body forces in the equation of motion such as gravitational force in

Eq. (26) and the potential energy terms in the enexgy equation (35).

5. Some simplifications of the fundamental equations of the mixture of

a gas with small solid particles.

In this section, we are going to derive some simple relations
for the mixture of a gas and pseudo-fluid of solid particles from the
fundamental equations which we derive in the last two sections. First
we consider a few basic thermodynamic relations of the mixture of pseudo-
fluid of solid particles and a gas and then the case where the fraction
volume Z 1is very small.

(a) Thermodynamics of the mixture of solid particles and gas.
We consider the mixture of small solid particles and a gas as a

mixture of a pseudo-fluid of solid particles and a gas. We are going to
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find some thermodynamic relations of the mixture as a whole8 in terms

of properties of the two species and volume fraction Z of the solid
particles or the mass concentration of the solid particles k . The density
P

of the mixture as a whole is:

=P +p = mn_ +mn = 2
Pu QP L pg Pop Pg

g"g + pg(l - Z) (60)

P

8|

where we assume mp = P

We define the mass concentration of the pseudo-fluid of solid

particles as follows:

B Zp,
kK = £ = SE (61)
P By Py

The pressure of the mixture as a whole is

Py TP T P tRy - (62)

From Eqs. (18) , (60) and (61), we find a relation between the pressure

of the mixture and the density of the mixture as follows:

1~k o, R T
P =TTz AT - Ay (63)
Ry = (l-kp)R (64)

where RM may be considered as an effective gas constant of the pseudo-

fluid of solid particles. It is interesting to notice that if the volume
fraction of the solid particles is negigibly small, the perfect gas law
holds for the mixture when an effective gas constant RM is used. For
many engineering problems, we do have very small value for Z but kp

is not negligible in comparison to unity. On the other nand, if Z 1is
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not negligibly small in comparison to unity, the yolume fraction of the
solid particles does affect the equation of state of the mixture as a
whole because Z is a function of pM .

"Since the temperature of the solid particles does not associate
with the random kinetic energy of the particles and the temperature of
the gas does relate with its random kinetic energy, it is not profitable
to define a temperature of the mixture as a whole as in the usual treat-
ment of a mixture of two gases.15 Thus we retain the two temperatures;:
one for the gas Tg and one for the pseudo-fluid of solid particles TP .
. In the equilibrium condition, these two temperature are, of course, equal,
i.e.; Tg = Tp = T , In the general case, we shall write Tg =T for
simplicity and TP may be equal to or different from T .

The'internal energy of the mixture per unit mass U is related

mi|

to the internal energies of the two species by the following relation:

= - 65
pMUmM Z psp cSp TP + (1L - Z) pg cVT (65)
or U = k ¢ T 4+ (1L -%k)c.T (65a)
mM p sp P ( p) v
where c¢ =c +c and we assume that c¢ and c¢ are constants for
sp s Vp sp v

simplicity. For equilibrium condition, we have the specific heat of the

mixture at constnat volume CVM as follows:

Cym = kp csp + (1 - kp) cy (66)

where Cy is the specific heat of the gas at constant volume.

The enthalpy of the mixture per unit mass HM is

Py '
= —_ = B -
HM U + k (c T + ) + (1 k)cec T (67)

pM P sp
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where cp is the specific heat of the gas at constant pressure,
For equilibrium condition, the specific heat of the mixture at constant
pressure is then

= k + (1 - k .
cpM P CSP ( p) cp (68)

The specific heats of the mixture are independent of the volume fraction
Z but depend on the mass concentration kP of the solid particles. The

ratio of the specific heats of the mixture is

c ., Q-%k)ec +k ¢ (1 +.ﬂ§
r p p) P__P_SP . Y (69)
CyM 1 - kp cy + kp csp T+ 1o

where y = cp/cV , N = kp(l - kp) and ¢ = csp/cV . The ratio I is
always smaller than vy if kp is different from zero and as kp =1,
'=1.

If we consider the mixture as a homogeneous medium, the first

law of thermodynamics for the mixture may be written as follows:

1
dQ = dUmM =<5 P dpM . (70)
Pi

where dQ is the heat addition to the mixture. Eq. (70) is the energy
equation of the mixture as a whole.
For isentropic change of state of the gas-particle mixture, we

have dQ = 0 and Eq. (70) gives

d
1 oar _ 1 P 71)
I'-1 T 1-Z DM

' = . 1 ay be
Since Z = kppM/psp , for constnat kp , and Tp T , Eq. (71) may

integrated and gives
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Py
T A = constant . (72)

If Z << 1 , the isentropic change of state of the mixture has a similar
relatioﬁ as that for a pure gas with the effective ratio of specific
heats r + In general, the volume fraction Z has some influence on
the isentropic change of the mixture.

Similarly, from Eq. (63) , for a given kp and Tp =T,

we have

ar 1 ey

) T 1-2 Pyt
From Eqs. (71) and (73), we have
dp
dp _ %;:Z M (74)
p DM
~r
Py
or P (—:2) = constant . (75)

Again, if Z << 1 , Eq. (75) is identical in form for the corresponding
relation of a pure gas but with the effective ratio of specific heats.,
We may calculate the so-called equilibrium speed of sound of

the mixture ay from Eq. (75) which is defined by the relation:

) ‘ I'(l - k )RT
a2 - _v_) - (76)
dey (1 -2)

The ratio of the equilibrium sound speed of the mixture ay to that of

the gas alone a = YRT is
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z
2

1 T](S
4 1 [T e L [<1+7—) 1 -k)
rellE A LI R TF 0 - (77)

(b) Fundamental equations for the mixture of gas and small solid
particles when Z << 1,
When the volume fraction Z of the solid particles is negli-
gibly small in the mixture, from Eq. (19), we may neglect the partial
pressure of the solid particles pp . By the same order of magnitude

estimate, we may also neglect the viscous stress of the pseudo-fluid

of solid particles T ., and the internal energy U .  Furthermore,
pij mp2
from Eq. (16), we have Bg = pg . Even though Z << 1 , in order that

the solid particles have some influence on the flow field of the mixture,
the mass concentration kp of the pseudo-fluid of solid particles should
not be negligibly small, As a result, from Eq. (13), we do not use Z
as a variable in the mixture but use the number density np or the

partial density B; as a variable in the mixture, i.e.,

= man . (78)
pP PP
Hence, we still have eleven variables: p = pg ’ Tg =T, Tp s pg ’
P (or np) . uPi and ugi where for simplicity we write Tg = T. The

fundamental equations of the mixture of a gas and small solid particles
may be simplified a little as follows:

(1) Equation of state of the gas: (see Eq. (18))
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(ii) Equation of continuity for the pseudo~-fluid of solid

particles. From Eq. (49), ﬁe have

9 9
»5?-(m n_) +'§§I (

= - G °
o"p (79b)

n_u
PPPi P
(1ii) Equation of continuity for the gas. Eq. (22) with

Z <<1 gives

0 9

e  — = fo} .

3t (pg) axi (pg_Ugi) P (79C)
(iv) Equations of motion for the pseudo-fluid of solid

particles, By neglecting the partial pressure pp and viscous stress

P;; Of the pseudo-fluid of solid particles, Eq. (26)becomes:
— P} P} > -> -> -+
mn (= + — = F +F =02 79d
o (TE Y Ui Bx, ) % p  bp PP (790)
(v) Equations of motion for the gas, For Z << 1 , Eq. (27)
becomes
[ 1 Up+Vertr +7 +F +02 (79%)
= e L] e
Pg Y3t T Ui Bx, ' g P g ‘g ‘bg pp

i

(vi) Equation of energy of the pseudo-fluid of solid particles.
Since Ump2 is negligible, we may use Eq. (53) for the internal energy of
the pséudo-fluid of the solid particles. With the help of Eq. (49), Eq. (53)
gives the equation for the internal energy of the pseudo-£fluid of the

solid particles as follows:
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9q
—_ 3 3 « pi
PP (ﬁ- + upi -5;;) (csTp) - Bxi + Qp + E:pl + 0pcsTp (79£)
(vii) Equation of energy of the gas. Eq. (36) with Z << 1
becomes

+oi gy o - ,]=kT-T +e . 79
ug 4P chJ T(p g) g (79¢)
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